

Warm Up

1. What are some of the different types of numbers you can think of? (Ex. Integers)

List at least 3 that you can think of.
2. Factor: $\quad 2 x^{2}+12 x-54$

Chapter 15:1 Learning Target

-I can Identify the different subsets of the real number system and how they relate to each other.

I can determine closure of operations on different sets of number.

I can take a repeating decimal and write it as a fraction.

Real Number System

Numbers can be classified into sets based on their characteristics.
Most numbers we use fall into the Real Numbers
(\mathbb{R} : Real Num.)

Natural Number System

The natural numbers can be thought of as the counting numbers. (Not including 0 or negatives)
(\mathbb{R} : Real Num.)
(N: Natural Num)

Whole Number System

The Whole numbers are the naturals and the addition of Zero.
(No negatives)
(R: Real Num.)
(W: Whole Num)
(N: Natural Num)

Integer Number System

The Integers are the whole number and their additive inverse (Now negatives are included)
(R: Real Num.)

Rational Number System

The Rational numbers can all be written as a ratio $\frac{a}{b}$
($\mathbb{R}:$ Real Num.)
(Q: Rational Num)
(Z: Integers)
(W: Whole Num)
($\mathbb{N}:$ Natural Num)

Irrational Number System

The Irrational numbers cannot all be written as a ratio $\frac{a}{b}$
(\mathbb{R} : Real Num.)
(\mathbb{Q} : Rational Num)
(j: Irrational Num)

Real Number System

Made up of the rational and Irrationals as well as their subsets
(\mathbb{R} : Real Num.)
(\mathbb{Q} : Rational Num)
(j: Irrational Num)

Real Numbers

Determining Closure For Sets

When an operation (,,,,$+- \div, \ldots$) is performed on any of the numbers in a set and the result is a number in that same set, the set is said to be closed, or have closure.

Closed for Subtraction
$\ldots,-2,-1,0,1,2, \ldots$

In the integers I can subtract any two numbers and get another integer.

Not Closed for Subtraction

$$
1,2,3,4 \ldots
$$

In the naturals I cannot always subtract two numbers and get another natural.

Try it \& give examples...

Is the set of all even numbers closed for addition?

Is the set of all odd numbers closed for addition?

Rational Repeating Decimals

.75757575...

